Stereoselective Synthesis of (E)-1, 3-Enynyl Bromides *via* Pd/Cu-catalyzed Cross-coupling Reaction of (Z)-α-Bromovinylstannanes

Ming Zhong CAI¹*, Hong ZHAO²

¹Department of Chemistry, Jiangxi Normal University, Nanchang 330027 ²Department of Pharmacy, Guangdong Pharmaceutical College, Guangzhou 510240

Abstract: (Z)- α -Bromovinylstannanes undergo the cross-coupling reaction with alkynyl iodides in the presence of Pd(PPh₃)₄ and CuI in THF at room temperature to afford stereoselectively (E)-1, 3- enynyl bromides in good yields.

Keywords: (Z)-a-Bromovinylstannane, palladium, cross-coupling, stereoselective synthesis.

The conjugated envne moiety is incorporated in a number of natural products and it can be readily converted in a stereospecific manner into the corresponding diene system¹⁻³. Recently, the discovery of strong antifungal agents⁴ and new powerful antitumor antibiotics⁵ has stimulated intense interest in the chemistry of enynes, which is at the origin of the biological properties of these substances. The metal or heteroatom- containing envnes will also be useful as building blocks for this purpose, since a lot of useful functional group transformations can be achieved by introduction and removal of metal or heteroatom functions. The synthesis of 1,3-envnes containing functional groups is of considerable interest in recent years. The stereoselective synthesis of 1,3-enynylsilanes⁶, 1,3-enynylsulfides⁷, 1,3-enynylselenides⁸, 1,3-enynyltellurides⁹, 1,3-enynylstannanes¹⁰ has already been described in the literature. However, to date, the synthesis of 1,3-enynyl halides has not been reported vet. The transition metal- catalyzed cross-coupling reaction is a highly versatile method for carbon-carbon bond formation and has been widely used as synthetic tool¹¹. In this paper, we wish to report that (E)-1,3-enynyl bromides could be synthesized by the cross-coupling reaction of (Z)- α -bromovinylstannanes with alkynyl iodides in the presence of Pd(PPh₃)₄ and CuI (Scheme 1).

Scheme 1

^{*} E-mail: caimz618@sina.com

Ming Zhong CAI et al.

The required starting (Z)- α -bromovinylstannanes 1 were prepared in good yields with high stereoselectivity by the hydrozirconation of alkynylstannanes and the successive reaction with NBS¹². The palladium copper cocatalyzed cross coupling reaction of (E)- α -selanylvinylstannanes with haloalkynes has been described^{8b}. We observed that when (Z)- α -bromovinylstannanes 1 were allowed to react with alkynyl iodides 2 in the presence of catalytic amounts of Pd(PPh₃)₄ and CuI in THF at room temperature for 48 h, (E)-1,3-enynyl bromides 3 were obtained in good yields. The typical results are summarized in **Table 1**. The products were identified by ¹H NMR, IR spectra and elemental analysis. The double bond geometries of the products 3 were determined by the treatment of **3a** with *n*-butyllithium in THF followed by hydrolysis to produce compound **4**, a reaction which occurs stereoselectively (**Scheme 2**)¹³. The stereochemistry of compound **4** was easily established, since ¹H NMR spectrum of **4** gives rise to a doublet at δ 5.74 with a coupling constant of 11.8Hz, which is consistent with a (Z)-configuration.

In conclusion, we have described a direct route to the stereoselective synthesis of (E)-1,3-enynyl bromides by the palladium catalyzed cross-coupling reaction of (Z)- α -bromovinylstannanes with alkynyl iodides. The method has the advantages of mild reaction conditions, straightforward, simple procedure and good yield. Investigation on the synthetic applications of (E)-1,3-enynyl bromides is in progress.

Entry	R	R^1	Product ^a	Yield ^b (%)
1	$n-C_4H_9$	Ph	3a	64
2	$n-C_4H_9$	n-C ₄ H ₉	3b	73
3	n-C ₄ H ₉	CH ₃ OCH ₂	3c	54
4	Ph	Ph	3d	61
5	Ph	n-C ₄ H ₉	3e	67
6	Ph	<i>i</i> -C ₅ H ₁₁	3f	65
7	$n-C_{6}H_{13}$	Ph	3g	62
8	$n-C_6H_{13}$	$i-C_5H_{11}$	3h	71

Table 1Synthesis of (E)-1,3-enynyl bromides 3

^a All the compounds were characterized by IR, ¹H NMR and elemental analyses.

^b Isolated yield based on the (Z)-α-bromovinylstannane used.

Scheme 2

1158

Experimental

¹H NMR spectra were recorded on a Bruker AC-P300 (300 MHz) spectrometer with TMS as an internal standard (δ in ppm). IR spectra were obtained on a Perkin-Elmer 683 instrument as neat films. Elemental analysis was measured using a Yanaco MT-3 CHN microelemental analyzer. THF was distilled from sodium-benzophenone ketyl before use. Pd(PPh₃)₄ and alkynyl iodides were prepared according to literature^{14,15}.

General procedure for the synthesis of (E)-1,3-enynyl bromides 3a-3h

To a stirred suspension of alkynyl iodide **2** (1.2 mmol), $Pd(PPh_3)_4$ (58 mg, 0.05 mmol) and CuI (19 mg, 0.1 mmol) in THF (5 mL) was added a solution of (*Z*)- α -bromovinylstannane **1** (1 mmol) in THF (1 mL) under Ar. The reaction mixture was stirred at room temperature for 48 h, treated with sat. aq NH₄Cl (10 mL) and extracted with CH₂Cl₂ (2×15 mL). The organic layer was washed with sat. aq NH₄Cl (2×10 mL), water (3×20 mL) and dried over MgSO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel eluting with light petroleum (30-60°C).

Acknowledgment

We thank the National Natural Science Foundation of China(Project 20062002) and Natural Science Foundation of Jiangxi Province for financial support.

References and Notes

- 1. P. A. Magriotis, K. D. Kim, J. Am. Chem. Soc., 1993, 115, 2972.
- 2. M. F. Shostakovskii, A. V. Bogdanova, *The Chemistry of Diacetylenes*, Wiley J., New York, **1974**, 242.
- (a) J. A. Miller, G. Zweifel, J. Am. Chem. Soc., 1983, 105, 1383.
 (b) E. J. Corey, A. Tramontano, J. Am. Chem. Soc., 1984, 106, 462.
- (a) A. Stutz, Angew. Chem., Int. Ed. Engl., 1987, 26, 320.
 (b) P. Nussbaumer, L. Leitner, K. Mraz, A. Stutz, J. Med. Chem., 1995, 38, 1831.
- (b) A. G. Mvers, P. J. Proteau, T. M. Handel, J. Am. Chem. Soc., 1987, 109, 3466.
 (b) A. G. Mvers, P. J. Proteau, T. M. Handel, J. Am. Chem. Soc., 1988, 110, 7212.
- 6. N. Chatani, N. Amishiro, S. Murai, J. Am. Chem. Soc., 1991, 114, 7779.
- 7. M. Koreeda, W. Yang, Synlett, 1994, 201.
- (a) A. L. Braga, G. Zeni, L. H. Andrade, C. C. Silveira, H. A. Stefani, *Synthesis*, **1998**, 39.
 (b) Y. Ma, X. Huang, *Synth. Commun.*, **1997**, 27, 3441.
 - (c) M. Z. Cai, C. Y. Peng, H. Zhao, J. D. Huang, J. Chem. Res., 2002, 376.
- (a) M. J. Dabdoub, V. Dabdoub, J. V. Comasseto, *Tetrahedron Lett.*, **1992**, *33*, 2261.
 (b) J. P. Marino, F. Tucci, J. V. Comasseto, *Synlett*, **1993**, 761.
- X. Huang, P. Zhong, J. Chem. Soc., Perkin Trans. 1, 1999, 1543.
- 11. (a) A. Suzuki, *Pure Appl. Chem.*, **1985**, *57*, 1749.
- (b) T. N. Mitchell, *Synthesis*, **1992**, 803.
- 12. B. H. Lipshutz, R. Keil, J. C. Barton, Tetrahedron Lett., 1992, 33, 5861.
- 13. G. Cahiez, Synthesis, 1976, 245.
- 14. D. R. Coulson, Inorg. Synth., 1972, 13, 121.
- 15. M. Lakshmi, N. Rao, M. Periasamy, Synth. Commun., 1995, 25, 2295.
- 16. Data of the compounds 3: Compound 3a: colorless oil; IR (film) 3065, 3025, 2958, 2929, 2220, 1594, 1570, 1486, 1442

cm⁻¹; ¹H NMR (CDCl₃) δ 7.54-7.23 (m, 5H), 6.50 (t, 1H, J = 7.0 Hz), 2.18 (m, 2H), 1.56-1.22 (m, 4H), 0.89 (t, 3H, J = 5.4 Hz); Anal. Calcd. for C₁₄H₁₅Br: C, 63.88; H, 5.70. Found: C, 63.61; H, 5.57.

Compound **3b**: colorless oil; IR (film) 2956, 2926, 2326, 1605, 1463, 1378, 1124 cm⁻¹; ¹H NMR (CDCl₃) δ 6.45 (t, 1H, J = 7.3 Hz), 2.03-1.89 (m, 4H), 1.51-1.25 (m, 8H), 1.06-0.78 (m, 6H); Anal. Calcd. for C₁₂H₁₉Br: C, 59.26; H, 7.82. Found: C, 59.04; H, 7.57.

Compound **3c**: colorless oil; IR (film) 2928, 2213, 1608, 1455, 1090 cm⁻¹; ¹H NMR (CDCl₃) δ 6.39 (t, 1H, *J* = 7.1 Hz), 4.23 (s, 2H), 3.22 (s, 3H), 2.04 (m, 2H), 1.52-1.26 (m, 4H), 0.89 (t, 3H, *J* = 5.4 Hz); Anal. Calcd. for C₁₀H₁₅OBr: C, 51.95; H, 6.49. Found: C, 51.78; H, 6.58. Compound **3d**: colorless oil; IR (film) 3056, 3023, 2953, 2923, 2201, 1599, 1573, 1489, 855,

Compound **3d**: colorless oil; IR (film) 3056, 3023, 2953, 2923, 2201, 1599, 1573, 1489, 855, 692 cm⁻¹; ¹H NMR (CDCl₃) δ 7.68 (s, 1H), 7.49-7.26 (m, 10H); Anal. Calcd. for C₁₆H₁₁Br: C, 67.84; H, 3.89. Found: C, 67.59; H, 3.70.

Compound **3e**: colorless oil; IR (film) 3057, 3024, 2956, 2931, 2256, 1601, 1573, 1490, 1443, 854, 692 cm⁻¹; ¹H NMR (CDCl₃) δ 7.69 (s, 1H), 7.48-7.27 (m, 5H), 2.26 (t, 2H, *J* = 6.8 Hz), 1.57-1.31 (m, 4H), 0.91 (t, 3H, *J* = 7.2 Hz); Anal. Calcd. for C₁₄H₁₅Br: C, 63.88; H, 5.70. Found: C, 63.67; H, 5.73.

Compound **3f**: colorless oil; IR (film) 3058, 3023, 2956, 2930, 2254, 1602, 1574, 1491, 1443, 1384, 1367, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 7.68 (s, 1H), 7.49-7.27 (m, 5H), 2.25 (t, 2H, *J* = 6.8 Hz), 1.64-1.18 (m, 3H), 0.88 (d, 6H, *J* = 6.7 Hz); Anal. Calcd. for C₁₅H₁₇Br: C, 64.98; H, 6.14. Found: C, 64.75; H, 5.90.

Compound **3g**: colorless oil; IR (film) 3059, 3021, 2957, 2926, 2223, 1596, 1571, 1490, 1444 cm⁻¹; ¹H NMR (CDCl₃) δ 7.55-7.22 (m, 5H), 6.49 (t, 1H, *J* = 7.1 Hz), 2.19 (m, 2H), 1.57-1.21 (m, 8H), 0.90 (t, 3H, *J* = 5.4 Hz); Anal. Calcd. for C₁₆H₁₉Br: C, 65.98; H, 6.53. Found: C, 65.79; H, 6.31.

Compound **3h**: colorless oil; IR (film) 2957, 2927, 2325, 1604, 1464, 1384, 1367 cm⁻¹; ¹H NMR (CDCl₃) δ 6.46 (t, 1H, *J* = 7.2 Hz), 2.05-1.88 (m, 4H), 1.54-1.24 (m, 11H), 1.07-0.76 (m, 9H); Anal. Calcd. for C₁₅H₂₅Br: C, 63.16; H, 8.77. Found: C, 62.88; H, 8.56.

Received 1 September, 2003